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J. Phys. A: Math. Gen. 19 (1986) 3425-3430. Printed in Great Britain 

Local generating functions for the enumeration of connected 
embeddings in a lattice 

M K Wilkinson 
Department of Physics, King’s College, Strand, London WC2R 2LS, UK 

Received 22 January 1986 

Abstract. A general formalism for the practical application of Sykes’ partial generating 
function method is given. The formalism is suitable for the study of problems where the 
generating functions depend on detailed ‘local’ properties and is constructed in a manner 
which allows easy programming of the method. 

1. Introduction 

The enumeration of connected embeddings in a lattice is a problem of classic difficulty. 
The exponential increase in the totals with increasing number of sites or bonds makes 
direct enumeration a very time-consuming process. Recently Sykes (1986a) has 
described an indirect approach to the problem utilising the method of partial generating 
functions (Sykes et a1 1965). 

We consider in this paper the practical application of Sykes’ method to enumeration 
problems in general and in particular to problems where detailed properties of the 
embeddings are recorded. Such properties are local in the sense that they depend on 
the immediate environment of each site; thus the generating functions of Sykes (1986a) 
become functions of an explicit site labelling. Problems of this type arise, for example, 
in the enumeration of lattice animals classified by valence distribution and the derivation 
of series expansions for the mean size in site percolation. 

The aim of this paper is to reformulate the partial generating function method in 
such a way that its application in any particular case is reduced to following a simple 
general recipe. This new formalism is so constructed that implementation on a computer 
is a straightforward task. 

A detailed account of the method of partial generating functions is given by Sykes 
(1986a, b) and a general familiarity with the method is assumed here. Briefly the 
method depends on writing the (restricted) generating functions for connected clusters, 
g* ,  in terms of the more easily constructed partially restricted generating functions g. 
On a bipartite lattice having two equivalent sublattices A and B, each of N sites, gm,n(A) 
is defined as the (partially restricted) generating function for clusters whose ‘connected- 
ness’ is not greater than that specified by m, a partition of the n ( A )  A sites into 
connected sets. Each such partition is called a class (see 9 2). If, for example, 
m = {3,2,2, 1) and n ( A )  = 8, then out of eight A sites there are at most three connected 
together as one set, there are two sets each containing at most two sites connected 
together and there is one set which contains only one site. g?(A) denotes the enumerator 

0305-44701861163425 + 06$02.50 @ 1986 The Institute of Physics 3425 



3426 M K Wilkinson 

of embeddings with all n(A) A sites connected together. By definition 
gz(A)= c c n ( . 4 ) ( a )  n (1) 

{ec}  I 

where C , , ( A l ( ~ )  is the number of connected clusters with n(A) A sites classified by 
some parameter set a = {ai}. Note that in all problems one of the oi is used to record 
the presence of B sites (i.e. n(B) = a,, say). There is in general a different &A) for 
each arrangement of n(A) A sites. To recover information about the ‘original’ lattice 
one writes for C,,, the number of connected clusters per lattice site, 

cn = c Cn(A) ,n (B)  (2) 

where the summation extends over all partitions of n = n(A)+ n(B) into two parts, 
and Cn(A),n(B), the number of clusters with n(A) A sites and n(B) B sites, can be read 
off from (1). The power of the partial generating function method lies in exploiting 
the symmetry relation 

Cn(A),n(B) = C n ( B ) , n ( A ) *  (3) 

Thus if one can derive &A) for n(A) = 1,2, .  . . , n then information on clusters through 
2n + 1 sites follows. 

The application of Sykes’ method is seen to be composed of two distinct parts. 
Firstly the exhaustive classification of A clusters with n(A) A sites. The information 
retained in this classification is crucial to the range of applicability of the data. The 
most general classification would allow the complete reconstruction of all A clusters. 
The second part of the problem involves forming partially restricted generating func- 
tions gm,n(A) for each distinct A cluster and combining them in the manner specified 
by Sykes (1986a) to yield the g* for that cluster. Use of ( l ) ,  (2) and (3) then yields 
the desired configurational information. 

The benefit of splitting the problem into two parts is the reduction in machine 
counting; to obtain the C, in (2) say, for some n, one needs to count far fewer A 
clusters than the direct count C,,. To be set against this is the fact that a large amount 
of information about each A cluster is required. These data are, however, applicable 
to several problems and need only be counted once. 

2. The labelled code 

A detailed consideration of the method outlined in the introduction reveals that the 
information about A clusters required for the application of Sykes’ method, in general, 
is essentially that contained in the adjacency matrix. It is, however, more convenient 
to arrange the information in a slightly different form. Since the method is concerned 
with connected clusters it is natural to classify each A cluster by its ‘connectivity’. 
Consider the A cluster on the simple quadratic lattice shown in figure 1. Here b is 
connected (within the A cluster) to the A-site set {1,2}, a is connected to the A-site 
set {2,3,4}, c and d are connected to the A-site set {4,5}, e and f are connected to 
the A-site set { 5 } ,  etc. The number of B sites connected to only the A-site set S is 
conveniently called the multiplicity of bridge S. Thus bridge {1,2} has multiplicity 1, 
bridge {4,5} has multiplicity 2, bridge ( 5 )  has multiplicity 2, and so on. 

Clearly, the connectivity of an A cluster is completely specified by a list of 2n(A) - 1 
integers that are indexed by the subsets of the set {1,2, .  . . , n(A)}. For the above 
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Figure 1. An A cluster on the simple quadratic lattice; U represents A sites; 0 represents 
B sites. 

example the list is 

(1) (21 (31 (4) 15) (1921 {1,3) * * ' {1,2,3,4,51 
2 1 1 0 2  1 0  0 

This list of numbers is called the labelled code. Note that the A-site labelling is arbitrary. 
In certain enumeration problems not all of the detailed information contained in the 

Table 1. Some sc and BCC A-cluster statistics. 

~~~ ~~ 

sc BCC 

Number of Number of 
Number of Number of labelled Number of labelled 
A sites clusters codes clusters codes 

~~ _____ ________ 

1 1 1 1 
9 2 13 3 

113 5 237 9 
1 647 25 4 995 61 

26 121 117 114219 407 
431 400 823 2753 781 3823 

Table 2. Details of BCC labelled codes. 

Number of 
A sites Count Labelled code 

1 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 

1 
3 
6 
4 
3 

24 
24 
42 
72 
28 
12 
24 

8 

8 
444 
662 
77 1 

4044040 
4264020 
43740 10 
6462020 
6572010 
7671010 
4242022 
436301 1 
5551111 
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labelled code is required and the code may be ‘compressed’ in various ways. If, for 
example, the labelling is removed altogether and all bridge multiplicities corresponding 
to bridges of the same cardinality are summed then the Ising codes of Sykes et a1 
(1965) are recovered. 

Using standard enumeration techniques (Martin 1974) lists of body-centred cubic 
(BCC) and simple cubic (sc) labelled codes have been produced through 6 A sites. 
Some information on the A clusters is given in table 1. It is estimated that to enumerate 
all labelled codes on the BCC lattice at order 7 would require some tens of hours of 
computer time. For illustration the first few BCC labelled codes are given in table 2 
( n ( A )  = 1,2,3). The bridge multiplicities are listed in standard dictionary order (i.e. 
{ l } ,  {2}, . . . , { n ( A ) } ,  {1,2}, . . . , {1,2, .  . . , n ( A ) } ) .  Note that the count of each labelled 
code is small. Such a list is therefore only a small compression of the list of all graphs, 
and the list is inevitably a long one. 

3. The dummy matrix formulation 

In this section a general formulation for the partial generating function method is 
described. Let Y be the set of labelled A sites, Y = {1,2, . . . , n ( A ) } .  Let the ith subset 
of v be A,  (excluding the empty set, 0). Denote by P ( A )  the set of all subsets of A 
(excluding 0), i.e. the power set of A. To each element, a, of P ( A )  there is an associated 
dummy variable [ a ]  = 6, where S takes the values 0 or 1. The set of dummy variables 
is called the dummy power set and is denoted by P’(A) .  The unrestricted dummy 
enumerator, G n ( A ) ,  is defined by 

Gn(A)(p’( = ( +f( P ’ ( A ~  1) ’‘1 (4) 
I 

where A i  appearing as an exponent is understood to denote the multiplicity of the 
corresponding bridge. f is a function of sundry variables depending on which enumer- 
ation problem is under consideration. The particular form off  is the substitution for 
that problem. Note that f can carry a lot of information since the sites of the A cluster 
are explicitly labelled. f is constructed in a way which ensures that the partially 
restricted generating functions g , , n ( A )  are obtained by setting appropriate dummy 
variables to either 1 or 0 in (4). For example, setting [l, 21 = [3,4] = 1 and all other 
dummy variables to 0 produces the contribution to g{2,2),4 from the disjoint pair {1,2} 
and {3,4}. The reason for introducing the labelled code is now clear: each factor in 
the unrestricted dummy enumerator (4) corresponds uniquely to a bridge ( A , ) .  

In the fundamental inversion of Sykes (1986a) each unrestricted enumerator is 
associated with a particular class. When n ( A )  = 4, for example, there are five classes 
(see table 3 ) .  To obtain g*, the g are added with certain ‘weights’, the inversion weights, 
of which there is one for each class. The information that is in practice required for 
the calculation of g* is seen to be a list of appropriate dummy variables along with 
the correct inversion weights. Each ‘entry’ in the list is a row of 2n(A) - 1 zeros or ones, 
one for each element of the dummy power set. Such a list can be prepared by simple 
exhaustive generation of the partitions of v. The array of dummy variables and inversion 
weights will be called the dummy matrix. This matrix is given to order 4 in table 3. 
At order 4 the breakdown into classes is also given. 

In summary the partial generating function method may be implemented via the 
following equation: 

g:(A) =c* w ~ ~ n ( A ) ( ~ ’ ( ~ ) ) .  ( 5 )  



Local generating functions 3429 

Table 3. The dummy matrix. 

~ 

Inversion 
n(A)  weight Dummy substitution 

1 1 1 
2 1 111 
2 -1 110 
3 1 1 1  1 1  1 1  1 
3 -1 1 1  11000 
3 -1 1110100 
3 -1 1110010 
3 2 1 1  10000 

4 -1 111111010010000 
4 -1 111110101001oO0 
4 -1 
4 -1 111100011100010 

4 1 lllllllllllllll} . .  . g[4).4 

4 -1 1 1  1 1  10000100000) , , , 
4 -1 1 1 1 100 1 10000000 g{2*2L4 

4 2 11111ooo0oooooo 
4 2 111101o0Oo0o000 
4 2 
4 2 1111o0o10000000 
4 2 llllOOOOlOOOOOO 
4 2 1 1 1 1 OOOOo100000 
4 -6 ~ ~ ~ ~ ~ ~ 0 0 0 0 0 ~ ~ ~ ~  g{l,l,l,l},4 

The first summation is over all labelled codes, each term in this summation is weighted 
by the count of the labelled code. The second summation extends over all rows of the 
dummy matrix; wi is the inversion weight of row j. 

Note that in the evaluation of ( 5 )  it is sometimes advantageous to proceed indirectly. 
Specifically, when many of the factors appearing in (4) are the same, it is especially 
useful to define a set of auxiliary polynomials (see Sykes 1986a) corresponding to the 
dissimilar cases, of which there are, say, A. Then the labelled code can be compressed 
to a A-parameter 'supercode'. If A is small enough, it is feasible to store the supercodes 
in a hash table and to carry out the polynomial expansions after all A clusters have 
been processed. Since the expansions are time consuming there is a clear advantage 
in making the above simplification where possible. Indeed, this is exactly the procedure 
employed in applications to date (Sykes 1986a, b, c, d, Sykes and Wilkinson 1986). 

We conclude this section with some simple examples. For the site animal problem 
considered by Sykes (1986a), a = {x ,  b},  where x records the presence of a B site and 
b records the presence of a bond. The substitution is given by 

f( P'( h i ) )  = b'*ilx[ h i ] .  

For the bond animal problem discussed by Sykes (1986b), the substitution is 

where pj is the j th  subset of A i  (excluding 0). For the bond percolatinn problem, 
using the 'yield factor' method (Sykes 1986c), a = { x ,  b, A} and 
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Here, for n(A) = 1,2, . . . , 6 ,  A = 1 , 2 , 3 ,  5 , 7  and 11 respectively, as follows from (8) by 
considering all possible different cases. 

It is clear from the above examples that the formalism here given encompasses the 
cases already studied. These are simple cases in the sense that they do not contain 
local terms. 

4. Conclusions 

It is apparent that the enumeration of connected clusters on a lattice can be perceived 
on several levels. At the highest level, one obtains connected clusters by summing 
partially restricted generating functions, g, with the correct inversion weights. Then, 
however, each g is a sum over terms in a particular class of connected sites. Finally, 
at the lowest level, each term in any class is a product of factors; these factors are 
polynomials determined by the element of the class to which they correspond. They 
are indexed by elements of the power set, P, which also indicates the appropriate 
exponent in the labelled code. 

A general recipe for the computer enumeration of connected clusters is then as 
follows: write down the substitution for the problem in hand and expand according 
to the dummy matrix, the exponents in the expansion being given by the labelled code. 
The above formalism can be applied to a number of ‘local’ problems including the 
enumeration of both bond and site animals classified by valence distribution and also 
the derivation of series expansions for the mean size in bipartite site percolation. In 
these local cases it is not possible to form a compressed code because of the explicit 
dependence off  on the A-cluster site labelling. It is hoped that applications will be 
made subsequently. 
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